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SHORT SUMMARY

Calibrating DTA models is complex due to the involved undeterminedness, non-linearity,
and dimensionality, restricting calibration approaches especially when calibrating larger net-
works. Simultaneous perturbation stochastic approximation (SPSA) has been proposed for
the DTA model calibration, with encouraging results, for more than a decade with multiple
variants trying to improve its application scalability on larger networks. Recently, PC-SPSA
has been proposed, combining Principal Component Analysis (PCA) with SPSA to reduce the
problem dimensions and non-linearity by limiting the search space in lower dimension space
based on orthogonal Principal Components evaluated upon a set of historical estimates. In this
paper, we further explore PC-SPSA implementation by assessing its sensitivity towards SPSA
parameters definition, its performance in calibrating synthetic problems of different dimensions
and non-linearity, and formulating multiple OD historical data–set generation methods for im-
proved calibration (in case of non-existent or irrelevant historical estimates). The performance
of each method is compared calibrating an urban network of Munich with similar PC-SPSA
settings, depicting more correlated generation techniques perform better consistently than
simplified ones.

Keywords: Model calibration, principal component analysis (PCA), simultaneous perturba-
tion stochastic approximation (SPSA)

1 Introduction
Dynamic Traffic Assignment (DTA) model calibration is a long–hauled research topic, due to its
complexity and non–linearity, which increases exponentially with the sizes of the network. Espe-
cially, the need to dynamically update a large set of DTA model parameters (route choice, link
capacity, Origin–Destination flows), leveraging a much smaller set of available traffic measures (link
counts, speeds), limits the application of the existing calibration approaches for larger networks
(Marzano, Papola, & Simonelli, 2009). Due to its ability to deal with non–linear and stochastic
systems, the Simultaneous Perturbation Stochastic Approximation (SPSA) (Spall, 1998) is one
of the most popular algorithms for DTA model calibration (Balakrishna, Antoniou, Ben-Akiva,
Koutsopoulos, & Wen, 2007). However, it has also been observed to reasonably fail in conver-
gence with larger–scale problems, with many researchers proposing different variants to improve
its applicability (Cantelmo, Cipriani, Gemma, & Nigro, 2014; Antoniou, Azevedo, Lu, Pereira, &
Ben-Akiva, 2015; Lu, Xu, Antoniou, & Ben-Akiva, 2015; Tympakianaki, Koutsopoulos, & Jenelius,
2015). Recently, a novel approach named PC–SPSA has been proposed (Qurashi, Ma, Chanio-
takis, & Antoniou, 2019). This approach combines Principal Component Analysis (PCA) (widely
adopted for both offline and online calibration problems (Djukic, Van Lint, & Hoogendoorn, 2012;
Prakash, Seshadri, Antoniou, Pereira, & Ben-Akiva, 2018)) with SPSA, limiting its search space
within a lower dimensional space for faster and more efficient calibration. PCA, given a series of
historical estimates, evaluates strong patterns and correlations, representing the variance present
with a few orthogonal/uncorrelated Principal Components (PCs) in a low dimensional space. The
unknown estimation variable (OD demand) is transformed into a few PC–scores, which are then
estimated using SPSA. Qurashi et al., 2019 demonstrated the performance of PC–SPSA calibrating
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synthetic demand scenarios of a medium sized urban network, significantly improving upon previ-
ously defined SPSA (Balakrishna et al., 2007). Although being powerful and intuitive, PCA–based
methods rely on the historical data–set to extrapolate estimation patterns.

Within this research, we aim to further explore and propose the implementation methods of
PC–SPSA, e.g. assessing its sensitivity towards SPSA parameters and problem characteristics
(dimensionality vs. non–linearity), exploring its implementation in different demand scenarios,
proposing solutions for favorable/unfavorable (irrelevant or non–existing) historical estimates.

The remainder of the document is structured as follows. Section 2 briefly describes PCA
implementation, SPSA and PC–SPSA. Then, Section 2.4 introduces the new probability functions
that will be adopted to produce different historical data–sets for the PCA in unfavorable scenarios.
Finally, in Section 3 the case study and their results are described, while conclusions are discussed
in Section 4.

2 Methodology
In this section, we introduce our methodology for DTA calibration with PC–SPSA. The following
table reports the most relevant notations.

Table 1: List of Symbols

D Historical data matrix with dimensions [nd × nij]
x Current/prior OD estimate
Dt

ij , xtij OD pair between zone i to j at time interval t
nij , nt, nd Number of OD pairs, time intervals and historical days
δrand Randomly generated number
δod Normally distributed random vector of size equal to OD vector with µ = 0

and σ = 0.333
δt Normally distributed random vector of size equal to total time intervals with

µ = 0 and σ = 0.333
δd Normally distributed random vector of size equal to total historical estimated

(days) with µ = 0.5 and σ = 0.08325
Rd, Rod, Rt Factor/weight coefficients for days, OD and time interval based randomness values

2.1 PCA implementation
PCA is implemented as per Qurashi et al., 2019. Singular value decomposition (SVD) is applied
to the historical data matrix D to evaluate its principal components (PCs) as:

D = UΣV T (1)

where columns of the nij ×nij unitary matrix V present orthogonal PCs, with their corresponding
PC–scores stored in the rectangular–diagonal matrix Σ with dimension nd × nij . U is a np × np
unitary matrix with orthogonal vectors. V is reduced to V̂ , where only the first few significant
PCs nv are retained:

V̂ = [ v1 v2 v3 ... vnv
] (2)

The new matrix V̂ is then used to reduce our starting OD flows vector x into PC scores z of
dimension [nv × 1], as:

z = V̂ Tx (3)

Furthermore, the OD vector can be approximated as:

x ≈ V̂ z (4)
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2.2 Simultaneous perturbation stochastic approximation (SPSA)
As defined by Spall, 1998, SPSA randomly perturbs its set of estimation variables θ (equation 5)
by a perturbation coefficient ck and ∆ (±1 Bernoulli distribution random vector) to evaluate a
random numerical gradient g (equation 6) and later minimize the estimation variables θ by the
evaluated gradient and a minimization coefficient ak (equation 7). The function f(θ) in equation
6 captures the error associated to a set of parameters θ.

θ± = θk ± ck∆ (5)

g′ =
f(θ+) − f(θ−)

2ck

[
∆1 ∆2 . . ∆h

]T (6)

θk+1 = θk − akg
′
k(θk) (7)

2.3 PC–SPSA
Within PC–SPSA, PC–scores vector z resulted from the implementation of PCA on the OD flows
vector x are calibrated instead of the OD flows vector x itself, using a modified SPSA algorithm
settings (as per Qurashi et al., 2019). The two modifications include: 1) Replacing the estimation
variables θ from OD flows vector x to its PC-scores z, 2) Modified steps of perturbation and
minimization from equation 5 and 7 to equation 8 and 9.

Perturbation: z± = zk ± zk × ck∆ (8)

Minimization: zk+1 = zk − zk × akg
′ (9)

2.4 Historical matrix estimation
PCA limits SPSA search space within the patterns/correlations captured by the estimated PCs in
historical estimates. Although being powerful and intuitive, PCA–based methods need to rely on
strong relevance of historical data–set with the targeted estimate, as if, the patterns of the target
solution are not present within the variance of historical estimates, PC–SPSA will not be able to
provide a good quality solution. This limits the applicability of PC–SPSA in scenarios of irrelevant
or non–existing historical estimates. In such scenarios, possible generation methods of historical
estimates with different correlations among time–dependent OD flows can follow three different
dimensions.

• Spatial correlation: Spatial correlation among OD pairs presenting the spatial structure
of the demand over the network.

• Temporal correlation: Temporal correlation of the OD flows i.e. fluctuation of the demand
from one time interval to another.

• Day to day correlation: Mobility demand is correlated to the demand for activities. As
such, it follows a structure and day to day variations are likely to occur.

Exploiting the three correlation dimensions that cover the possible user behaviors, historical
estimates are generated using 6 different methods:

1. Spatial correlation:

D =

nd∑
d=1

nt∑
t=1

Dt =

nd∑
d=1

nt∑
t=1

(1 +Rodδod) × xt (10)

2. Temporal correlation:

D =

nd∑
d=1

nij∑
ij=1

Dij =

nd∑
d=1

nij∑
ij=1

(1 +Rtδt) × xij (11)
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3. Spatial and temporal correlation:

D =

nd∑
d=1

D =

nd∑
d=1

(1 +Rodδod×t) × x (12)

4. Spatial and day-to-day correlation:

D =

nt∑
t=1

Dt =

nt∑
t=1

(1 +Rodδod×d) × xt (13)

5. Temporal and day-to-day correlation:

D =

nij∑
ij=1

Dij =

nij∑
ij=1

(1 +Rodδt×d) × xij (14)

6. Spatial, temporal and day-to-day correlation:

D =

nd∑
d=1

D =

nd∑
d=1

(1 +Rodδdδod×t) × x (15)

Beyond capturing all possible correlations between variables (spatial, within-day temporal, day-
to-day temporal), an additional value of these formulations is that the distributions δod, δt, and δd
can be derived by other data sources, such as mobile phone network data and survey data. This
lead to a framework that is more general - as does not depend on an historical database - and more
flexible - as the structure of the PCs would reflect both OD flows as well as other spatial-temporal
dynamics.

3 RESULTS AND DISCUSSION

3.1 Experimental setup
3.1.1 Network

The urban network of Munich city center (shown in Figure 1) is used to set up the calibration
case study in the open–source traffic simulator DLR SUMO (Lopez et al., 2018). The network
consists of 2605 edge links with 564 detector locations (area of 9.5 × 10.5 km) and the demand of
the morning peak (between 7am and 10am) is represented in 15 min intervals with an OD matrix
of [61 × 61] or 3721 OD pairs. The simulations are set up in the mesoscopic resolution with
trip–based (one–shot) stochastic user route choice assignment.

3.1.2 Calibration scenario

The probability functions defined in Section 2.4 can be used for generating a series of scenarios,
capturing (up to a certain extent) user behaviors and assessing how the model performs, when
erroneous assumptions are made. The most appropriate and probable scenario that captures the
user behavior is generated using the probability functions for spatial and temporal correlations, as
per the guidelines from Antoniou et al., 2016, using equation 16 with x considered as true/target
demand and X the initial demand.

X = (Rd +Rodδod×t) × x (16)
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Figure 1: Network of Munich city center

3.2 Results
3.2.1 PC–SPSA parameters

Being a random search stochastic algorithm, SPSA requires appropriate pre–definition of its hyper–
parameters, varying significantly for different problems (guidelines as per Spall, 1998). Without any
universal set of SPSA parameters identified, they are defined mostly by trial–and–error methods
during implementation. As shown in Qurashi et al., 2019, in PC–SPSA, these parameters are
significantly less sensitive, due to two reasons: 1) they act as percentage change in perturbation
and minimization (eq. 8 and 9), instead of absolute change (eq. 5 and 7 from SPSA); and 2)
due to the faster rate of convergence with PC–SPSA and properties of PC scores (fewer estimation
variables with even lesser being more significant). Figure 2 shows a simple sensitivity analysis result
of the hyper–parameters c and a, calibrating one hour demand for the Munich network, evidently
showing very similar convergence patterns with different values of both hyper–parameters.
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Figure 2: Comparison of using different hyper parameter values (c and a) for PC–SPSA
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3.2.2 Problem dimensions vs. non–linearity

PC–SPSA improves on SPSA by improving its resilience against dimensionality (fewer estimation
variables–PC scores) and non–linearity (orthogonal PCs) in DTA model calibration. Figure 3 shows
convergence rate results of both SPSA and PC–SPSA for calibrating problems with dimensions
varying from 20 to 90 OD zones (i.e. 202 to 902 OD pairs), mapped using non–linear synthetic
functions to link counts.

Convergence results of all functions depict that the increase in problem dimension does not
affect the convergence performance of PC–SPSA and results from all except Easom function show
that PC–SPSA can also well cater for different amount of non–linearity with orthogonal PCs (also
evident with Easom function results, showing similar performance for both PC–SPSA and SPSA
due to its property of being flat with a single global minimum). SPSA performance in the simple
non–linear and rastrigin functions deteriorates with an increase of the problem dimensions and for
the eggholder function it is almost unable to converge due to either its complexity or inappropriate
hyper–parameter settings.
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Figure 3: Non-linear synthetic functions with different dimensions

3.2.3 Historical matrix generation methods

The generated scenario is calibrated using 6 historical data matrices with PC–SPSA (methods
showed in equations 10-15). Performance evaluation of such calibration techniques requires three
major performance indicators, given as:

1. Best goodness–of–fit between calibrated and target OD matrix [Figure 4 (left)].

2. Best goodness–of–fit between observed and measured counts [Figure 4 (right)].

3. Best convergence performance over the required number of iterations for different time inter-
vals [Figure 5].

For the first two performance indicators, method 6 (i.e. Equation 15, spatial, temporal and
day to day correlation) and method 3 (i.e. Equation 12 spatial, temporal correlation) depict best
performance for converging to the least RMSN (observed versus calibrated traffic counts) and best
quality solution (calibrated OD matrix versus target OD matrix figure 4). It’s also evident that
methods 1 and 2 (historical data–set with single correlation either spatial or temporal, equation
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10-11) are worst in performing consistently, getting good quality solution or lowest RMSN for
traffic counts.
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Figure 4: Comparison between all generation methods

Figure 5 depicts the convergence patterns for all 6 historical data–sets for two specific time
intervals, confirming method 6 based historical data–set as the best for the third performance
indicator (calibrating to the least RMSN error within the first few —3 or 4— iterations).
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Figure 5: Comparison between generation methods for specific intervals

The results for method 3 and 6 evidently show that the combination of spatial and temporal
correlation is crucial for scenarios created with similar technique but method 6, performing the
best, also adds a day to day based correlation within the historical estimate providing somewhere
more search space or variance for PC–SPSA to find a better solution and improve the overall
calibration performance.

4 Conclusion
This paper explores the implementation of PC–SPSA by analyzing its stability/robustness against
SPSA hyper–parameters definition and different problem characteristics, and proposing effective
methods of historical data–set generation crucial for calibration performance for principal com-
ponent analysis (PCA) based algorithms. Calibrating the network of Munich, PC–SPSA shows
good stability against a range of values for different hyper–parameters. This is not usually the
case for SPSA, which is more sensitive against appropriate definition of these parameters (sec-
tion 3.2.1). Secondly, we used synthetic experiments and simplified functions to test PC–SPSA’s
resilience against dimensionality (network sizes) and non-linearity (multiple local minima, flat ob-
jective function) 3.2.2). Also in this case, the model shows resilience against the increase in problem
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dimensionality and different types of non–linear functions, due to its property of calibrating the
problem in lower dimensional space based on orthogonal PCs.

Multiple historical data–set generation methods are proposed exploiting three different cor-
relations among time dependent OD flows and are later analyzed with most probable demand
calibration scenario (replicating realistic changes in OD demand). As per the results (section
3.2.3), historical estimates that are generated with more correlation (i.e. method 3 and 6) out-
perform other simplified techniques in terms of consistency, OD estimation quality, and minimum
error, probably due to containing more correlated information than random variance.

Furthermore, in the MFTS2020 conference, we will include validation of historical matrix gen-
eration technique on a larger network of Munich city (with a network of 8689 links, 706 detector
location and demand of OD matrix [73 × 73] or 5329 OD pairs) with different demand scenarios
and also other network information e.g. travel times. Also, since the results proposed in this study
are based on synthetic experiments, we aim to test PC–SPSA and its historical data–set generation
methods using real traffic data from Munich to generate an assumption–free benchmark scenario
i.e. the "true" network state is derived from real data, allowing us to validate our probability
functions against real data.
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